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ABSTRACT

An experimental investigation was conducted of the forces arising from an
unsteady flow against a flat plate used as the drag body in a drag-force
current meter. A current meter was constructed for the purpose of measuring
flow in the nearshore region of the ocean. An experiment was conducted to
characterize the response of the sensor to an unsteady flow. The current
meter was subjected to both an oscillatory and mean flow simultanecusly. This
was accomplished by sinusoidally oscillating the sensor while trsnslating it
down a water channel. Fourier analysis of the data yielded instantaneous and
cycle-averaged values of the drag and mass coefficients for the plate.

The cycle—averaged values of the coefficients were correlated with a
nondimensicnal parameter which is proportional to the ratio of the steady
component of the drag force to the unsteady component. This correlation
indicates that for large values of this parameter, the cycle-averaged value of
the drag coefficient becomes constant and equal to the value found for steady
flow. The variation of the instantaneous values of the coefficients through
the velocity osclllation were examined and an attempt was wade to correlate
the behavior of the coefficients with the coefficients of the non-dimensional
parameter. The ability of the current meter to accurately measure the mean
value of the sinusoidal flow oscillations was correlated to the nondimensional
parameter and was shown to improve for large values of the parameter.
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l. INTRODUCTION

The nearshore region of the ocean is the primary interface between man
and the marine environment. The nearshore, along with the surface and the
bottom, is one of the three bhoundary layer regions of the ocean. The
nearshore boundary layer is defined here as extending from the breaker zone
out to a depth of approximately 60 meters. Nearshore transport processes link
the estuarine and marine environments. The measurement of water velccity and
temperature in the nearshore boundary layer can provide information useful in
the proper management of man's interaction with these environments.

A suitable measurement system is obviously a requirement to analyze the
physical dynamics of ocean boundary layer regions. The nearshore flow field
may be composed of several types of motion, including large— and small-scale
turbulence, wind waves, long waves, convection, advection and tidal flow.
Therefore, the system must accurately measure an unsteady component of motion
superimposed on a mean velocity. Langrangian systems measure specific
particle paths typically by the use of drogues or dye traces. This technique
18 vseful in the evaluation of pollutant {e.g., oil spills) or mass transport
models, However, this method is deficient in providing quantitative results
that lend themselves to statistical analysis of the field of motion.
Fixed-polnt or Eulerian systems involve the use of an array of moored current
meters. The data can be used to generate a quantitative analysis of the mass
and momentum fluxes through the array.

There are several commercially available current meters that can be used
in fixed-point mooring systems. The average cost per umit {$5,000 to $15,000)
limits the use of these instruments in sufficient quantities to achieve the
high resolution necessary in three-dimensional, boundary-layer studies. In
addition, the velocity transducers in most of these units have limited, high
frequency response and/or threshold speed.

To reduce the cost of a nearshore experiment to a feasible amount, a
mooring system was designed which uses one multi-channel data recorder
interfaced to several velocity and temperature sensors distributed over the
water column. A number of velocity sensors were considered with regard to
cost, frequency response, threshold speed, long-term calibration stability,
resistance to biofouling, and ability to accurately resolve orthogonal
components of motion. These sensor designs fall into three classes: thermsal
boundary layer, electromagnet and mechanical. The thermal, boundary-layer
sensors (e.g., hot film, hot wire, thermistor chain) measure the voltage
necessary to maintain an electrical resistance element of a constant
temperature as the heat transfer from the element varies with flow velocity.
These instruments are extremely susceptible to biofouling and the calibracion
of the sensor varies with water temperature. Electromagnetic sensors measure
the small voltage induced as the sodium and chloride ions in seawater move
through a magnetic field produced by the sensor. The microvolt level signal
must be detected in a millivolt nolse level environment. OCune component of
this noigse arises from the instability of the potential of the electrodes used
to detect the signal. This drift in the electrode potential causes an
instablility in the calibration curve. The quality of the electrounics
necessary to resolve the signal under these conditions causes these
instruments to be more expensive than other designs. Mechanical sensor



designs usually involve counting the turns of a rotor or propeller. These
instruments have bearing surfaces which are susceptible tc biofouling and
corrosion. The hydrodynamice of lthe propeller or rotor varies with degree of
biofouling. These sensors often have poor frequency response due to the
inertia of their rotating parts.

One sensor design which satisfied many of the requirements was that of
the drag-force current meter. This instrument consists of a bluff body
attached to a force-measuring transducer. In the present work a flat plate is
used as the bluff body. The body is exposed to the flow and the hydrodynamic
drag force on the body is measured and recorded. Given an adequate
understanding of the relationship between velocity and the resultant drag
force, these force recordings can be reduced to yleld a measurement of the
flow velocity at that point. Such an instrument was expected to be relatively
inexpensive to construct. The calibration of the transducer can be
compensated for temperature variations. Unlike other mechanical designs,
this sensor has no rotating parts or bearing surfaces; therefore, the
calibration curve should be less sensitive to biofouling and corrosion.
Coating the bluff body with anti-fouling paint further minimizes the effect of
biofouling on the performance. The use of two separate drag bodies at right
angles, or one symmetric body, allows orthogonal force components to be
resolved and recorded.

The relationship between hydrodynamic force and velocity is well
understood for steady flow in the range of Reynolds numbers (103 to 105 for
the instrument used in this work) that normally occurs in the nearshore
environment. However, this relationship is not well understood for an
ungteady flow, particularly in the presence of a mean-veloeity component. The
usefulness of the drag-force current meter is obviously limited without a full
understanding of the forces generated in such an unsteady flow.

Potential flow theory indicates that the force on an object in an
unsteady flow is proportional to the acceleration of the free stream fluid.
In 1950, O'Brien and Morison [l] combined this effect with the standard,
turbulent-profile drag expression to form Morison's eguation:

Fy = 1/2 G pA v{u] + Cp P ¥ 355 (1.1)

where

= total force on the object (dynes)
= drag coefficient

= mass coefficient

density (gm/cm3)
= crosgs—-sectional area of the object exposed to the Flow (cmz)

= volume of fluid assoclated with the object (cm3)

4 » v 87 m"
[}

= free stream fluid velocity (cm/sec)

oo

= free stream fluid acceleration (cm/secz)

n.ln.
T



The first term in the equation is the steady flow profile drag. The second
term 1is propertional to the force required to accelerate the mass of fluid
displaced by the ohject. Morison's equation is one of the more generally
accepted models of hydrodynamic force on an object exposed to an accelerating
viscous fluid flow.

Inman and Nasu [2] constructed what 18 perhaps the first drag-force
current meter used to measure nearshore flows. A sphere was used as the bluff
body in this instrument. The effect of fluid acceleration was investigated by
osclilating the sensor in air and water. Such tests showed that the
acceleration term in Morlson's eguation could not be neglected relative to the
profile drag term. Furthermore, the mass coefficient was found to be a
function of the period of oscillation. Because oof these characteristics, the
sensor was used to record only crest and trough values of the orbital wave
velocity. Such values were thought to occur at times when the free stream
acceleration is zero, and the force is a function of velocity only.

Beardsley, et al. [3] built and tested a sensor that used a fine wire
mesh formed into a cylinder as the drag body. The sensor was tested by
oscillating it in still water. These tests Indicated that because oof the
cylinder's small size (0.318 cm I.D.), there was no appreciable effect of
fluid acceleration on the total hydrodynamic force. A wire mesh was used in
preference to a solld cylinder because it was thought that a mesh cylinder is
less likely to be affected by vortex shedding. Such vortex shedding causes an
oscillating force perpendicular to the flow direction. This force is
indistinguishable from free stream turbulence at the shedding frequency and
would result in contamination of the sensor output.

Smith and Harrison {4] addressed the problem of vortex shedding by using
a perforated sphere as a drag body. Teata in steady flow showed that such
perforations attenuated the forces arising from the vortices, but no tests
were reported concerning the performance of the sensor in unsteady flow. They
required that the sensor be used in a flow where the kunsteady component 1is
small enough that the profile drag term alone is sufficient to calculate the
velocity. However, Smith and Harrison 80 not precisely define the values of
lmean and oscillatory velocity or the period of oscillation that constitutes
sufficiently a small unsteady component.

Experimental data useful in analyzing kthe response of a drag-force
current meter in an unsteady flow have been reported by Keulegan and Carpenter
[6]. They experimenttally determined the instantaneous and cycle-average
values of Cp and Cy for plates and cylinders in a fluid (water) that was
undergoing sinusoidal oscillations. The flow oscillations had a zero mean,
and only two-dimensional bodies were considered. Their results showed that
the coefficients varied throughout the period of the oscillation. That is,
the values of Cy and C; were not constant in time. The values of C4 and Cn
averaged over a complete cycle were shown to vary as a kfunction of the period
parameter:

K= L (1.2)



U; = amplitude of the velocity oscillation (cm/sec)
T = period of the oscillacrion (sec)
D = diameter of the cylinder or width of the plate (cm2)

K is often referred to as the Keulegan—Carpenter parameter and is proportional
to the rtio of the distance travelled by a fluid particle during half of a
veloelty cycle to the size of the bluff body.

The question of error resulting from using a drag—force semnsor to measure
flow velocity using only the steady flow term in Equation (1.1) was addressed
by Olson [7]. In his analysis, he used the average values of Cq and Cy from
the work of Keulegan and Carpenter. Olson considered a sensor based on a
cylindrical drag body. His calculations showed that if Keulegan and
Carpenter's results were valid for non-zero mean flow, serlous errors in
instantaneous and average velocity would result from neglecting the
acceleration effect. These results were based on cycle averaged values of Gy
and C,, and a mean flow that was smaller than the oscillatory component.
Olson also showed that reducing the diameter of the cylinder would reduce the
effect of acceleration relative to the profile drag. However, a considerable
reduction 1n frontal area would reduce the total force on the body to a value
that would be difficult to measure.

These investigations lead to the following general conclusions:

l. In a nearshore flow, both the velocity and the acceleration are
unknown. Moreover, the mass coefficient may vary with frequency,
which i8 also unknown. Therefore, the instrument should be used in a
flow in which the first term in Equation (l.l) is sufficient to
calculate the velocity from the measured force.

2. There exists a poor understanding of what combinations of mean
veloeity and acceleration constitute such a flow regime.

3. A significant reduction in the size of the drag body reduces the
effect of free stream acceleration. However, such a reduction
impairs the ability of the sensor to measure small velocities.

4, Because forces arising from vortex shedding are a consideration,
especlally when bluff drag bodies are used, an effort should be made
to keep vortex shedding (and the accompanying sensor response) to a
minimum or at least predictable.



2. OBJECTIVES

The purpose of this work was to investigate the forces arising from an
unsteady flow against a flat plate used as the drag body in a drag force
current meter. The reasons for choosing a plate as the drag body are given in
Section 3. The experiment consisted of subjecting the sensor to both an
oscillatory and mean flow simultanecusly. This was accomplished by
sinusoidally oscillating the current meter while translating it down a towing
tank, The amplitude and period of the oscillations were varied as well as
the translation velocity. The drag and wass coefficients thus obtained were
examined with respect to the following considerations:

l. the behavior of the instantaneous and average values of the
coefficients in the presence of a non-zero mean flow as compared to a
zero mean flow;

2. the ability to correlate the variations in the average values of Cq
and Cy with a3 non-dimensional prameter that includes the effect of =z
non—zero mean velocity;

3. the usefulness of such a correlation in determining values of
velocity and acceleration that give an acceptable sensor performance.



3. DESCRIPTION OF THE FLAT PLATE CURRENT SENSOR

3.l. Use of a Flat Plate as the Drag Body

A plate was chosen as the drag body of the current meter for several
reasons.:

l. The published, steady-flow drag coefficient [8] for a square, flat
plate (Cqy = 1.17) is approximately that of a circular cylinder
(Cq = 1.18 for two-dimensional flow), and higher than that of a
sphere (C4 = 0.47). A large drag co-efficient increases the
sensitivity of the Instrument for a given cross—sectiomnal area of
the drag body.

2. The point on a symmetric body from which vorticies originate may
shift as the flow conditions chaunge or as biofouling occurs. On a
flat plate, this point is stabllized at the edges. Such stability
may lessen the effect of vortex shedding or make the effect more
predictable. The corners of the plate were rounded in an attempt to
avold an interaction between vorticies shed from two adjoining edges.

3. The possibility of using a flat plate in a semsor of this type has
not been preyiously evaluated. DUrag and mass coefficients have been
determined for a two~dimensional plate in a sinusoidally oscillated
flow with zero mean [7]. However, no such experiments were known in
which the coefficlents were determined for an oscillatory component
superimposed on a mean flow. This case 1s not only of importance in
current-meter design, but it is also a rather poorly understood area
of the general subject of forces on bodies in unsteady flows.

3.2, General Description of the Instrument

Two, flat-plate and force=transducer assemblies ware used to measure the
horizontal, hydrodynamic force vecetor. Each transducer was composed of a
cantilevered beam with two strain gages attached to the beam near the
cantilever point. The plate (A = l6l.3 cm?) was attached to the free end of
the beam. The maximum strain experienced by each beam could be set by an
adjustable stop. A description of the physical characteristics of the
transducer assemblies and associated electronics is given in Appendix 8.1. The
cantlilevered beams were attached to an aluminum frame that formed the
protective cage for the drag bodies (Figure 3.1). One end of the frame was
fastened to a length of PVC pipe that served as the electronics case. Wires
from the transducers passed through the end of the case adjoining the frame. A
cable connecting the sensor to a power supply and data recorder passed through
an O-ring sealed plug on the other end of the case. The sensor housing could
be attached in mechanical series with the spar of a fixed-polnt mooring
system. The frame would be a stressed member in such a system.

In steady flow, the force seen by the transducer plates is described by
the first term in Equation (l.1). The velocity is thus determined by:
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(3.1

ds

where
Cis = steady—-flow drag coefficient
Fy = hydrodynamic force measured by the transducers

This relationship was verified as part of the unsteady flow experiment. The
threshold velocity of the sensor in steady flow is approximately 5 cm/sec.
This velocity corresponds to a strain at the gage site of approximately 6
ucm/em, which is the practical lower limit of the transducer assemble. The
need for long-term zero stability limited the maximum value of the stralm to
about 1500 ucm/cm. For the 12.7 cm by 12.7 em plate used, this strain
corresponds to an upper velocity limit of B0 em/sec. In higher velocity
flows, a swmaller plate can be used to raise the upper velocity limit at the
expense of a loss of threshold sensitivity.



4, DESCRIPTION OF THE EXPERIMENT

4.1. Force Calibration of Current Meter

A voltage output versus foree input calibration was performed for each
flat-plate transducer. This force to voltage relationship was obtained by
placing the sensor such that one of the plates was in a horizontal position.
The output voltage was recorded as weights varying in mass from 1 gm to 400 gm
were placed on a bracket attached to the center of the plate. The calibration
for the upper transducer used in the unsteady flow experiment is given in
Figure 4.1. The calibration constant obtalnmed for this transducer was 1.108 x
10~3 volts/dyne.

4.2. Determination of the Tare Voltage

When the mass of the plate and cantilevered beam is accelerated, a force
(and thus an output voltage) is produced which is proportioned to the
acceleration. Past investigators have termed this voltage the “"tare
voltage.” In the unsteady flow experiment, the current meter was accelerated
by the sinuscldal oscillatyor described in Section 4.3.3. The raw output of
the sensor was composed of a voltage proportional to the hydrodynamic force,
and the tare voltage proportional to the acceleration of the sensor. The tare
voltage was determined as a function of acceleration and subtracted from the
raw output as part of the data reduction for the unsteady flow experiment.
To determine the tare voltage for the upper transducer, the current meter was
oscillated in air with the sinusoidal oscillator. By accelerating the
transducer at low speeds in air, the hydrodynamic forces are negligible and
the output is representative only of the tare force.

The tests in air showed the tare voltage to be proportional to, and in
phase with, the sinusoidal acceleration produced by the oscillator. A plot of
tare voltage versug peak acceleration for the upper transducer is given in
Figure 4.2. The tare voltage calibration constant was found to be 4.0 x 10-3
volts/cm/(sec?).

4,3. Unsteady Flow Experiment

4.3.1. General Description

The hydrodynamic force data were obtained by subjecting the flat-plate
current sensor to a range of oscillatory flow velocities, frequencies and mean
velocities that were representative of the nearshore environment. The sensor
was sinusoidally osciljated by a mechanism attached to a carriage mounted on
rails above a towing tank. Translating the carriage down the length of the
tank imparted a mean velocity to the sensor. The output from the upper
transducer of the sensor, along with a trace of the motion of the oscillator
was recorded on an FM cassette deck for later computer analysis. These output
traces were also recorded on a dual=channel stripchart recorder.
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4.3.2. Towing,Tank

The towing tank used for these tests was located at the Environmental
Protection Agency Fluid Modeling Facility in Research Triangle Park, North
Carolina. The tank was 25 m long and 2.5 m wide and was filled to a depth of
approximately | m with a saline solution which had a density of 1.135 gm/cc.
Blocking effects associated with smaller tanks were minimized by using such a
large tank.

The oscillator, power supply and data recorders were placed on a large
carriage which ran on rails above the tank. The sensor was suspended from
the oscillator such that the upper velocity sensor was at approximately
mid-depth in the tank. A continuous cable system pulled the carriage through
a2 10 m long test section. The cable was driven by an electromagnetic clutch
with controlled slippage which was in turn driven by a constant speed D. C.
motor. The system is capable of moving the carriage at speeds of 0 to 49
cm/sec. The ends of the test section were defined by microswitches which
turned a digital timer on as the carriage entered the section and off as it
completed the 10 m run. The average velocity of the carriage was calculated
by dividing the length of the section by the time required for the carriage to
traverse that length. Ample space was available to accelerate the cart to a
constant speed before it entered the test section.

4.3.3., Oscillator

A mechanical oscillator was used to impart a sinuscidal velocity to the
current meter. The type of cscillator used in this experiment was a Scotch
yoke mechanism [9]. The mechanism was driven by a variable speed D. C. motor
capable of driving the oscillator at frequencies from 0.1 Hz to 1 Hz. The
oscillator incorporated a varlable length crank capable of producing
displacement amplitudes of 15.9, 12.7, 10.2, 7.6, 5.1, and 2.5 cm. Various
combinations of crank length and motor speed yielded a range of amplitudes and
periods of oscillation. The motion produced by the oscillator was measured
with a displacement transducer, and the output was recorded along with the
sensor output.

443.4. Procedure

The tests were performed by setting the amplitude and frequency of the
osclillator to yield a desired oscillatory velocity and then running the cart
through the test section at mean velocities of approximately 10,20, and 40
cm/sec. After these three runs the oscillator setting would be changed and
the runs would be repeated. Before the tests were begun, the FM cassette deck
was calibrated to known voltages. A repeat of this calibration at the end of
the tests showed that no appreclable change in calibration had occurred. The
taw data from this experiment consisted of the density of the salt water, the
length of the test section, the calibration comstants of the cassette deck,
the amplitude setting and run duration for each run, and the recordings of
oscillator displacement and sensor output.

Included in these tests was a set of four ruans in which the oscillator

was not running. This set of runs defined the steady £low drag coefficient
for the sensor over the range of mean velocities of interest.

12



5. DATA REDUCTION

5.1. General Description

The data reduction lnvolved calclulating the time average and
instantaneous values of C4 and Cp given the raw data from the unsteady flow
experiment. The coefficients obtained from the runs with a zero mean velocity
were compared with those obtained by Keulegan and Carpenter for a
two—dimensional plate in a zero mean flow. The average values of the
coefficients were then plotted against a non—dimensional parameter in an
attempt to extend the correlation with the period parameter to flows with a
non-zero mean component. This parameter 18 termed the extended period
parameter and can be shown to be proportional to the maximum force occurring
in the cycle due to steady~flow profile drag divided by the maximum force due
to the inertial term in Equation (1l.l). Finally, this parameter was used to
quantify the abllity of the instrument to measure the average velocity in a
sinusoidal unsteady flow.

5.2 Steady Flow Drag Coefficient

The steady—flow drag coefficient, C4g, was determined from recordings of
four runs in which the oscillator was not running. Cgg was calculated using
the first term in Equation (l.l):

2V
C - i (501)
ds AF pDzﬂz
where

AF = force calibration constant (1,108 x 10_5 volts/dyne)

V = sensor output {volts)

2 2
D area of the square flat plate (cm”)

Table 5.1 contains the values of Cyz for each run. The average of these
values 1s 1.25. This value is hereafter used as the value of Cyg.
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Tabel 5.1. Values of Steady Flow Drag Coefficient

Uo Cds
{ca/sec)
10.192 1.23
19.876 1.25
40.019 1.23
44.090 1.27

5.3+ Preparation of Representative Data Set

The tape recordings of the osclllator position and sensor output trace
were digitized and entered into the memory of a Data General Eclipse computer.
The two signals were filtered and sampled simultaneously using identical
filters; therefore, no phase shift between the signals occurred due to
sampling technique. Tests of the filters confirmed the absence of a phase
gshift. The cutoff frequency of the low pass filters was 3 Hz, and the highest
oscillatory frequency was less than 1 Hz. After filtering, the signals were
sampled at 0.02 sec intervals by a 10-bit amalogue—to—digital converter. The
recordings for each run were sampled 2,048 times for a total digitized record
length of 40,96 sec. Since the velocity input to the current meter was
cyclic, the output voltage from the sensor was also cyclic in nature. An
average, sensor—output cycle for each run was prepared from the digitized
rtecords by averaging a number of the sensor—-output cycles from a given record.
The number of cycles used to generate the average varied from 6 for
high—-frequency oscillations to 2 for low~frequency oscillations with a high
mean velocity. Examples of the latter case were runs with oscillator periods
of 9 to 10 se¢c and carriage rur times of 22 to 24 sec. For these cases only
two complete oscillations occured within the length of the test section. The
starting point for each of these oscillations was determined by examining the
digitized record of the oacillator motion. The peaks of this sinusoidal trace
were defined to be the endpoints of the velocity input cycle. The endpoints
of the sensor-cutput cycles were taken to be coinclident with those of the
input cycle with the oscillator motion defined as:

x(t/T) = - Rb cos(2mt/T) (5.2)

The velocity input to the current meter is:

U(t/T) = U0 + Ut sin(2Ant/T) (5.3)

14



TABLE 5.2. Velocity Input Data

Run HNo. U,/U) Uy 0y T*

{cm/sec) {cm/sec) {sec)

1 0.00 0.00 23.36 4,90
2 0.00 0.00 24.18 3.30
3 0.00 0.00 18.00 2.66
4 0.00 0.00 21.71 2.94
5 0.00 0.00 15.80 2.02
o 0.00 .00 9,97 1.60
7 0.95 10.17 10.68 9,34
3 1.86 19.85 10.66 9.36
9 4,14 44,18 10.68 9.34
10 1.35 10.18 7.53 8.48
11 6.52 19.90 3.05 10.46
12 5.84 44 .12 7.56 8.48
13 N.44 10.19 23.30 2.74
14 0.84 19.89 23.04 2,70
15 2.28 45.13 19.83 3.22
16 5.86 10.66 1.82 8.76
17 10.55 19.84 1.88 8.50
18 1.89 10.20 5.39 2.96
19 3.68 19.85 5.39 2.96
20 8.19 44.16 5.39 2,96
21 2.87 10.20 3.56 8.96
22 5.60 19.87 3.55 8.98
23 12.30 44,14 3.59 8.88
24 0.36 10.12 28.50 1.12
25 0.70 19.84 28.50 1.12
26 1.36 40.24 29.55 1.08

*Estimated Maximum Error in T is *.08 sec. U) calculated from U; = 21L/T
where L = Oscillator arm length.
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U, = < (5.4)

R = osclllator crank length (cm)

t = time into the waveform {sec)
T = period of the oscillation {sec)

U, = peak oscillatory velocity (em/sec)

Uo = mean velocity (ecm/sec)

The period of an individual velocity cycle was determined by counting the
number of points from one peak in the motion trace to the next. The period of
the average output cycle was equal to the average of the periods of the output
cycles ugsed to construct it. This average was typically within 2 points (0.04
sec) of the period of any given constituent cycle. The mean velocity, Uy, was
determined by dividing the length of the test section (10 m) by the duratilon
of the run. Table 5.2 contains the values of U,, Uy, and T for each run.

The average output force for each run is proportional to the time varying
force on the flat—plate drag body caused by the velocity imput described by
Equation (5.3). This force 18 a sum of the hydrodynamic forces and the “tare
force™t

(ve/T) = V]
- (5.6)

Ay

where
V, = output of sensor in the absence of any flow (volts)
The tare force was found to be proportional to the acceleration of the sensor

and can be expressed in terms of Uj and T:

A
FTARE(E/T) = -x-;

U

1 2t
T

——

T (5.7)

cOos8
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where
A, = tare voltage calibrartion constant (4.0 x lf.‘.l-3 volts (secz)/cm)

The nondimensional hydrodynawlc force coefficient used in this analysis was
defined as:

F(t/T)
F*(t/T) =

2 2
pD (Uo + Ul)

F(t/T) _ Frare(t/T)

(5.8
2 2 2 2
pD (Uo + Ul) pD (Uo + Ul)

Equation (5.5) is therefore nondimensionalized by a2 value proportional te the
maximum steady flow drag force that occurs in the cycle. The average voltage
cutput cycle for each run was converted into a time series of this
nondimensional force coefficient through the application of Equations (5.6),
(5.7), and (5.8). The time series thus formed is hereafter referred to as the
"representative waveform™ for each run. Equation (l.l) can be similarly
nondimensionalized to yleld:

. c, ulul . %%  au
2 dt

(5.9
H 2 2
2(U0 + Ul) D (UO + Ul)

The fluld volume, ¥, was defined as a cylindrical volume enclosing the flat
plate (7):

Given the sinusoidal velocity imnput, the force on the flat plate was modeled
as:

17



2

cC Cr
Fr(8) = -ii (R_+ R sin(8))|R  + R, sin (8)] + g cos(8) (5.10)
where,
2
U U u.T |U
2Tt o) 1 * K 1 [+]
8 = &2 R = R, = K* = ;o om e [ 4 ] (5.11)
T o (U +1)) 1 T+ U, R.'l). D |U;

Equation (5.10) is the model used to determine the values of Cy and Gy, for
each representative waveform.

Equation (5.11) defines the extended perlod parameter, K%, as a
nondimensional grouping made up of the Keulegan-Carpenter period parameter, K,
and a term containing the ratio of mean velocity to peak oscillatory valoclty.
K* is therefore seen as a parameter which wmay extend the correlation of C4 and
Cy with K in zero mean flow to oscillatory flows with a non=2ero mean
component. Chapter 6 contalng plots of the cycle average values of C4q and Cy
versus K* for both Zero and non—zerc mean flows. Note that in the absence of
ean flow, K* reduces to the perlod parameter K.

5.4. Determination of the Coefficients

Fourier series analysis was employed by Keulegan and Carpenter to
determine both the average and instantanecus values of the coefficlents for
zero mean flow. This technique was expanded in the present work to include
the effect of a non—zero mean velocity. In this analysis, the representative
wave form for each run was assumed to be represented by an infinite sum of
sine and cosine terms:

A
F*(9) = 2—° + A 8in(8) + A, 810(208) + A, sin(38) + v ¥
(5.12)
+ Bl cos(B8) + B2 cos(28) + B3 cos(308) + ... +
where the Fourier coefficients are defined by:
A -1 [ px(e) a0 (5.13)

o]
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A =5 | FA(®) sin(n®) d8 0 > 1 (5.14)
o
1 2n
B =< [ E*(®) cos(nb) d8 n?»1 (5.15)
a

These integrals are approximated by finite summations for use with the
discrete values of the representative waveforms by:

2 NZ
A =& F*(1) (5.16)
° N
2 N
A =% )} F*x(1) sin(nd) n >l (5.17)
n N
I=1
, ¥
B == } F*(I) cos(n8) n>l (5.18)
n N
1-1
where:

N = number of discrete values in the representative waveform record

_2am(1-1)
N

Thus, A, and B, could be computed for each run. C4 and Cp were then
computed from the values of A; and By, The details of the method used to
obtain the coefficients depend on the values of U, and Uj. The runs were
therefore divided into three cases: U, = 0, U, > U}, and U] < Uy. A computer
program based on this model was written for each case. These programs
produced the numerical values of Cy and Cp. Appendix 8.2 contains a
derivation of the method for the three cases. The results of the derivation
for each case are presented here. Table 5.3 contains the average values of
the drag and mass coefficlents along with the value of K* for each run.
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Table 5.3. Average Values of C3 and G,

Run No. K* C4 Cn
1 7.854 2,914 1,794
2 6.283 3.158 1.896
3 4.770 4.086 1.704
4 5.026 3.648 1.871
5 2.513 5.616 1.521
) 1.257 7.182 i.136
7 29.939 1.293 0.856
8 64.360 1.200 1.454
9 207.287 1.185 1.252

10 27.820 1.168 1.287
11 142.179 1.347 3.431
12 234.629 1.155 2.256
13 10.384 0.789 1.876
14 17.039 0.884 1.648
15 53.951 1.288 1.466
16 58.994 1.526 1.727
17 168.1086 1.314 2.259
18 10.512 0.766 1.087
19 274545 1,280 1.273
20 106.151 1.272 2.271
21 37.523 1,312 1.529
22 109.145 1.396 1.928
23 4434331 1,288 2.260
24 44615 1.941 0.942
25 7.228 1.490 0.815
26 14,013 1.030 0.595
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Up = 0 Case

For the zero mean flow case, the representative waveform is symmetric in

time:

F*(8) = —~F%(8 + m)

Thus, the even Fourier coefficients are taken to be zero.

{5.19)

For this case, the

expressions for the average values of the drag and mass coefficients are:

I
!

The instantaneous values of Cy and Gy were given by:

Z [A -D G,./2]
_ = 2n+1 2n+l “d
Cal® = ¢y +2 nzl s1a(8) Jsin(@)]  Sin((20+1)8]
Z cos{{2n+1)8]

C (8) =T + 2k ) Bys1 5
n=1 T cos B

where

2w

D, -% / |sin(®)| sin(®) sin(n6) db
0

Z = number of terms taken in the finite series
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In the computer program used to calculate the values of the coefficlents, 2
was equal to 3 for Cy and 4 for C,;. The derivation of these results is

contained in Appendix 8.2,

U, > U; Case

For the runs in which the mean velocity is greater than the maximum
oscillatory components, the representative waveform was asymmetric. This
asymmetry is due to the square law dependency of the profile drag term. For
this case, the average values of the drag and mass coefficlients were given

by:

_ A
T - 0 (5.24)

d = .2 . .2
(R,0 + RI/Z)

T = 1 (5.25)

The expressions for the instantaneous values of the coefficlents are:

I 2 »
C.(8) =C_+ I a sin[(2n+1)8]
d d (R + R sin9)2 n=1 2n+]
[+ 1
+ ] B, cos(2mé) (5.26)
m+2
_ R w
€ (8) =C = wop— ¥ 4, sin(208)
T cost |a=]
+ § B, 4 cos[(Zmtl)e] (5.27)

m=]
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For this case, Z was equal to 6 for both expressions. The derivation for this
case 1s contained in Appenkdix 8.2.

U, < Uy Case

For the case where the maximum oscillatory velocity is greater than the
mean, the velocity is negative through part of the cycle, and the
representative waveform was asymmetric. Therefore, it is difficult to remove
the absolute value term from Equation {(5.10). Because of this restriction,
expressions for the instantaneous values of the drag and mass coefficients
were not derived. The derivation of the expressions for the average values of
Cq and Cy is contained in Appendix 8.2, and the results are given here:

2
R (6, = 8,.) 2RR
— 2 1 1 2 o 1
Camt| BT Mt r T (e
Rf -1
- cos 31) + o (sin[282] - sin[291}) {5.28)
251 B EE R in 6 8 R R i 2 8
Cn = 22! 7 (R (sim 8, - sin 8 ) + R R (sin” 8,
2 Ri 3 3
- sin 91) —3-(sin 62 - gin 61) (5.29)
where
-1 u
8. =7 4+ sin 2
U
1
=1 u
8. = 21 - gin F'o-
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5.3 Mean Velocity Measurement

As pointed out in the introduction, the model for a drag-force current

meter used to take field measuremeuts is usually considered to include only
the steady~flow, profile drag term in Equation (l.1l).
waveform would be described:

In that case, the force

Cie U*(O) |ux(0) |

F*(6) = 7 (5.30)
Z(U0 + Ul)
where
U* = measured velocity given F* ag an input
The measured velocity under this assumption is then given by:
* 1/2
Ut = % |[(U + U )2 gz—) {(5.31)
o 1 c
ds
For a representative waveform contzining N data points, the ratio of the
measured mean velocity to the known input mean is approximated by:
F.:= (_2_)1/2 1...& T
U0 Cds Uo 5Q (5.32)
where
N
Foo =3 L 7 (rr(int/? (5.33)
Q N I=]

Table 5.4 gives the value of this ratio for each run.
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Table 5.4. Mezn Veloeity Measurement Accuracy

Run No. U*/U, K%

7 0.864 29.939

8 0.848 644360

9 0.972 207.287
10 0.631 27.820
11 1.0186 142,179
12 0.960 234.629
13 0.401 10.384
14 0.425 17.039
15 0.955 53.951
16 1.098 58.994
17 1.028 168.106
18 0.358 10.512
19 0.,966 27.545
20 1.011 106.151
21 0.895 37.523
22 1.058 109.145
23 1.018 443.331
24 0.949 4.615
25 0.739 7.228
26 0.665 14,013
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6. RESULTS AND DISCUSSION

6.1. Meaning of K*

The extended period parameter, K*, is proportional to the ratio of the
maximum profile drag to the maximum unsteady inertial force that occurs in
the velocity cycle. The maximum profile drag is the first term in Equation
(1.1) evaluated at the peak of the sinuscidal flow:

C
D 2 2
Fep = 3 PD° (U, + 1)) (6.1)

4

The maximum inertial force is the second term in Equation (l.l) evaluated at
the poiant in the wvelocity c¢ycle where the unsteady component 1s zero:

Cmva3 ZTﬂJ1
The ratioc of the two components 1is thus:
2
c uT (o c
o 2[R Ty 3 (6.3)
I c 1 Cx
m m

K* is therefore a measure of the relative magnitudes of the two
components evaluated at their respective maximums. At low values of K%, the
inertial force makes up a large fractiom of the total force on the plate. In
this case, the response of lthe sensor is largely a reflection of the
acceleration in the flow field. At values of K* greater than about 30, the
square term in the profile drag expression begins to dominate and the sensor
responds primarily to velocity.

6.2, Instantaneous Values of Cj and Gy

Figures 6.1 through 6.9 contain three examples of representative
waveforms and the time variations in 3 and Cj that were derived through
Fourier analysis from these waveforme. The representative waveforms show the
variation in the measured hydrodynamic force coefficient throughout the period
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of the sinusoidal motion cycle of the sensor. Included in these graphs are
the predicted variations in the force coefficient calculated using the steady
flow model, Equation (5.30).

Figure 6.1 shows the variation in the force coefficient for run #4 and
is exemplary of those runs which had a zero mean flow. The force is much
greater than that predicted by the simple, steady—flow model and the maximum
force leads the maximum veloecity in time. As Keulegan and Carpenter found,
the values of Cy and Cy are not constant throughout a sinusoidal period with
zero mean. The present study ylelded tesults that show a similar character in
the time variations. Figures 6.2 and 6.3 are graphs of the cyclic variation
of Cq4 and Cy, respectively, for run #4 and are typical of the behavior of the
coefficients for a zero mean flow. Cj tends to a very large value at the
points in the waveform where the input velocity is zero. The smallest value
is obtained where the velocity is a maximum, but this value 1is still much
greater than the steady flow value. The variations in C are continuous and
much smaller in magnitude than those of Cj4.

Figures 6.4 through 6.6 are from run #10 which was typical of rums with
values of K* in the range of 10 to around 30. Vibration from the cart used to
generate the mean flow is apparent in the graph. The steady-flow model again
underestimates the maximum force and the maximum force again leads the maximum
velocity in time. With the Introduction of a mean velocity, the character of
the time variations in Cy and C changes dramatically. C4 is now constant
through most of the period. Figure 6.6 shows the singular variations in Cy
that are typical of rums in this range.

Figures 6.7 through 6.9 are from run #23 which has the largest value of
K* obtained in this experiment. Steady flow tends to dominate the dynamics of
this situation and thus the steady flow model predicts the maximum force with
better accuracy. As would be expected, the phase difference is also smaller
than that found at lower values of K¥. C3 1s continucus throughout the cycle
and similar in character to the mass ccefficient for the zero mean—-flow runs.
The large variation in Cj shown in Figure 6.9 correspond to the points in the
period where the acceleration is zero. The character of the coefficients of
runs with large K* is therefore seen to be the reverse of that found for zero
mean~flow runs, all of which have small values of X*. Recall that a large
value of K* denotes a flow in which the hydrodynamic force is dominated by
profile drag, whereas in a flow with a small value of K* the inertial force
dominates.

6.3 Average Values of Cj and C

Figure 6.10 is a plot of Ez'versus K* for the zero mean flow runs from
the present study and from the data of Keulegan and Carpenter. Recall that
for a zero mean oscillation, K* reduces to the period parameter, K. Both
studies ylelded values of the coefficient that are greater than the published
value of 1.17 for a2 square plate. The results of the present study, while
similar in form to the previous work, indicate smaller values of Cq. One
possible explanation for the difference is that the present study used a
square plate, whereas the previous experiment was performed with a plate that

36



£3110018A uvel 0187 JOI 3UaIDTIIo0) deaq padevasay BI24)D

‘01°9 sandiyg

p. |
0001 00T ot T
1 ! 0
00 o .
°®
0 o. o v
o) .
- " K
00
o
L9 D.D_
- 8
0T
Apnis jussoaag woxy eyeg -9
193uadie) pue uevbsnoy Jo eqeg -0

A

37



000T

£31700T3A umop OI3Z IO0F JUBTOTIJO0) SSBR paldeiaay o[o4) "I1°'9 @andty

00T
|

A

o
&f vo @

Apnayg jussoag wexay eaeqg -
aejuadie) pue uebsTnay 3o eaeq -~ O

38



gpanned the test channel, thus approximating two-dimensional flow. The value
of the steady-flow drag coefflicient {10) for two-dimensional flow around a
flat plate (approximately 2) is larger than the value for three-dimensiocnal
flow around a square plate (l.17). Such a difference also appears to exist in
unsteady flow.

The values of'E; from the two studles are plotted against K* in Figure
6.11. The two data sets correlate well for this coefficient. There has been
some discussion of hydrodynamic differences that may exist between the flow
caused by oscillating the fluld about the body, and oscillating the body in a
still fluid. Some investigators (%) have suggested that this difference would
be seen as a difference in the value of C; for the two aituations. Figure
6.11 suggests no such difference since the two data sets are products of the
two different situations.

Figures 6.12 and .13 show the correlation of the cycle average values of
Cq and Cp with the extended period parameter for both zerc and non~-zero mean
valocity flow. Figure 6.12 is a plot of Cd versug K* for the three cases
described in Section 5.3. There is a discontinuity between the values
obtained from the zero mean flow case and the other two cases. This
discontinuity indicated that the existence of a mean flow causaes a reduction
in the profile drag. The two non-zero mean-flow cases produced similar values
of Cd over the range of K* in which they overlapped. Both cases showed a dip
in the value of the drag coefficient over that range as compared to higher
values of K*. For values of K* greater than 25, Cj seems to attain a constant
value. The average of the 14 values of Cd for K* greater than 25 is 1.287
with a standard deviation of 0.098. This value is 3% greater than the
steady-flow value of 1.25 that was obtained during the experiment. This
percentage difference i1s considered to be within experimental error.

Figure 6.13 is a plot of E;'for_Ehe three cases. The scatter in this
coefficient is larger than that for C4. This observation indicates that
vibration from the carriage used to produce the mean velocity probably is the
source of error in the experiment and that the vibration most strongly affects
the mass coefficient. The most scatter occurred for the U, < U) case. There
is no apparent discontinuity in CE between the zero and non-zero mean-flow
cases. The graph indicated an increase in the value of Cm for K* greater than
25. Unlike the drag coefficient, a trend toward a comstant value could not
clearly be established, although the range of values of Cm was smaller than
that of Cd .

6.4 Usefulness of the Flat Plate Current Meter

If a drag-force current meter is to be useful in unsteady nearshore
flows, it must be used in a flow regime in which the steady flow model will
correctly predict the velocity. Implicit in this requirement is the need for
a constant drag coefficient which is nearly equal to the steady-flow drag
coefficlent so that complex, unsteady—~flow calibrations are avoided. The
extended period parameter provides one way of quantifying that regime. Plots
of the variation of C4 throughout the velocity cycle indicate that the
coefficient becomes constant as K* increases. Figure 6.12 shows that for
values of K* greater than 25, the average drag coefficient is constant and has
a value which is equal to the steady-flow value within experimental error.
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This steady—flow value was 6.8% higher than the published value for a flat
plate. The probable explanation for this difference is the partial blocking
on the upper side of the plate caused by the top portion of the aluminum
frame.

The results concerning the constancy and predictability of the drag
coefficient indicate that the extended period parameter is useful in
determining those flow fields in which the flat-plate current meter can be
used with acceptable accuracy. To reinforce this conclusion the ability of
the sensor to accurately measure the mean velocity in an unsteady flow is
shown as a function of K* in Figure 6.14. For values of K* greater than 50,
the error in mean velocity measurement is typically less than 10%, and is
less than 6% for K* greater than 100. As an example, a K* of 50 is produced
for the 12.7 em by 12.7 cm plate by an oscillatory velocity of 5 cm/sec, a
mean velocity of 15 cm/sec and a period of 8 sec. For flows with a K* less
than 50 the sensor underestimated the mean velocity.
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Appendix 8.1

Physical Characteristics of Transducers

Assemblies and Electronics

PLATE

Size: 12.7 cm by 12.7 cm
Material: 0.318 em thick ABS plastic

FORCE TRANSDUCER

Material: 1.27 cm diameter 6061-T6 aluminum rod
Moment Arm Length: 10.16 cm

Modulus of Elasticity: 6.8% x 101l dyne/cm2
Yield Strength: 2.758 x 109 dyne/cm?

Two strain gages were mounted on a pair of parallel rectangular flats
milled into the rod near the cantilevered end. The flats were 0,762 cm wide.
The thickness of the material between the flats was 0.229 cm. The strain gage
site was waterproofed by enclosing it in a section of 1.27 cm diameter latax
tubing. The tubing was safety wired into grooves milled into the surface of
the rod on both ends of the gage site. The volume enclosed by the tubing was
filled with glycerin.

STRAIN GAGE
Type: Micromeasurements CEA=-125-UW=350

Nominal Resistance: 350 ohms
Nominal Gage Factor: 2.13

WHEATSTONE BRIDGE

Configuration: Half-Bridge, bending stress

Fixed Resistors: (2) 1000 ohm films deposited on the same substrate
for temperature compensation

Bridge Supply Voltage: 9 volts

Amplifier Gain: 500

46



Appendix 8.2

Derivation of the Expressions for the Instantaneous

and Average Values of the Drag and Mass Coefficients

The representative waveform for each run was modeled by the nondimen-—
sionalized form of Morison's equation {Equation (5.10)):

Ccl C “2
F*(8) = == (R_+ R, sin B)IRO + R sin 8] + -Z-I-Kn-;—cos 8 (8.2.1)

This model was equated to a series of lksine and cosine terms (Equation
(5.12)):

A
Fk(8) = .i-"- + A sin(8) + A, sin(20) + A, sin(38) + ... +
(8.2.2)
+ Bl cos(B) + B2 cos(28) + B3 cos(30) + ... +
where:
= L
8 = 2n 7
The Fourier coefficients in Equation (8.2.2) are defined:
1 2"
a =< I Fx(®)ds (8.2.3)
o]
1 27
A = J  F*(8) sin (n6)d6 =n > 1 (8.2.4)
Q
p 2T
B o+ J  F*(8) cos(n8)d8 n > 1 (8.2.5)
o]

Combining Equations (8.2,1) and (8.2.2):
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2

Cd Cmﬂ
5 (R, + R, sin B)R + R, sin 8] + 5p~ cos ©
A @
==+ A sin 6 + E A 8in(nb)
2 1 n
n=2
=
+ B cos 6 + !} B cos(n®) (842.6)
n=2 °

Derivation for U, = 0 Cage

For this case:
Ry = 0
Rp = 1
Since the average hydrodynamic force is zero for this case, the representative
waveform is symmetric in time:

F*(8) = -F*(8 + T)

Therefore, the even Fourier coefficlents are zero. Equation (8.2.6) becomes:

2
d me
—5 sin 8 [sin 8] + oo cos 8 = A, sin ©
L]
+ E Aﬁ sin(n8) + Bl cos O
n’3’5’7,...
o
+ 7 B cos(nb) (8.2.7)
n=3,5,7,..|
sin 6 |sin 8| can be expressed as an expansion as:
sin 8 |sin 8| = D, sin 6 + Dy 81n(30) + Dg sin(50) + ... + (8.2.8)

where
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D =20 where n is even

D == [ |sia 8|(stn 8) sta né a8

where n is odd (8.2.9)

Carrying out the integration for Dy through D7 yields:

D, =

Solving the expansion for sin 8 yields:

D D

stn o alstn ®lsin 8 3 0o gey 5 s
D 5
1 1 1
Y7
-D— 811‘1(73) = s2s ™ (802-10)

1

Substituting the expression for sin 8 (Equation (8.2.10)) into Equation
(8.2.7) and regrouping ylelds:

2

Cd Cmn A
7 sin & |sin 8] + 5 cos o 'q sin 8 |sin 6]
) i
+ A - — A i sin(nd)
0=3,5,7,.00, | & B3 1
+ B cos 8 + E B cos(n8) (8.2,11)
1 n
n=3,5,7
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The average values of the drag and mass coefficients, EE and E;} are
found by assuming that Morison's equation (Equation (8.2.1)) holds exactly
with constant coefficients. Under this assumptiom, all the terms on the
right-hand side of Equation (8.2.11) vanish except for two terms:

c, ¢ v’ A
— sin @ |sin 8] + xa— cos & = ﬁ; sin B |sin B8] + B, cos © (8.2,12)

Therefore, the average values of the drag and mass coefficients are given by:

C = = (8.2.13)
d Dl

L 2B

C = (8.2-14)
a T2

Equation (8.2.1) can be forced to fit the representative waveform by allowing
the drag and mass coefficients to vary. The expressions for the variable
coefficients, Cd(ﬁ) and G (9), are obtained by including the terms that were
assumed to be zero for the constant coefficlent case. From Equation
(8.2.11):

c,(8) A
5— sin 8 |sin 9| =5 sin ® |sin 8]}
1

I -

n"3,5,7,occ n Dl 1
¢ (8)n? o
“sgr— cos & = B, cos 8 + ] B, cos(n8) (8.2.16)

n=3,5,7

Recalling the expression for the average coefficients, the instantaneous
expressions are:

oo D
e 2 _n =
C(8) =C + —— 5T 0] nES s A -5 T, sin(n8) (8.2.17)
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2R o
m

cm(e) =C + Bn cos(n8) (8.2.18)

T cos 9 n=3,5,7,...

Derivation for U, > Uy

For this case if is convenient to represent the velocity as

U= UD + U, cos®’ (8.2.19)

3

comparing to Egq. 7.

8" = 0 - /2 (8.2.20)
and
Cy R
P#(0) = 2= (R + R  cos8')|[R_+ R, cos8'| - -2— siné' (8+2.21)
m
For U < U
o 1
C mez
.8 o2 2 2., === gin" (8.2.22)
Fx(8) 5 (Ro + 2R°R1 cogb' + Rl cos 8') ZRm
Using cos28' = 1/2 + 1/2 cos{28")
Cd 2 R12 Rlz C n2
F%(8) = 5= [R “ + —— 2R R, cos8' + —— cos(26)'] - 22 sinf’'  (8.2.23)
m

A new fourier expansion is now made in @'

B! L o
F*(9) --2-°-- + ) B' cos(m0') + ] A sin (n8') (8.2.24)
m=1 n=1

The (primed) coefficients in this expansion can be related to the (unprimed)
coefficients in the original expansion given by Eg. (8.2.2)
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o o
m=1
2
B ' = (-1) A m odd
m m
.
2
LI - *ron
Bm (-1) Bm m even (8.2.25)
n+l
2
A" = (=1 B n odd
n n
o
A" = (-1) 2 A n even
n n

These will be used later. Equating Eq. 8.2.23 to 8.2.24 gives

@ 2 & R, "
— — ] ——— 1 . t
5 [R0 =4 2R0R1 cosb' + 5~ cos (207) ZRh sin®
BT : @
- % + B, cos8’ + B,' cos(28) + ] B ' cos(n8')
m=3
+ A" sin®' + ¥ A ' sin(n8’) (8.2.26)
n=2

If Morison's equation (Eq. 4) held for comstant values of Dy & Cp, e.g.,

t - 2
B C R
2] d 2 1
—— == (Ro * =) (8.2.27a)
E&
Bl' = —2 (ZRIRO) (8-2«-27]3)
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Et:I R1
Bz' --—é--—z——- {(8.2.27¢)
2
cm
AT = --2—:-— (B.2.27d)
m
Rearranging
- Bo' Ao
C = = (8.2.28)
d r%24:r% gr%,g?
o 1 o 1
2 2

Equations (8.2.27) and (8.2.27¢) can be used as a check on EE} In order to
develop a consistent expansion they are left as is:

B ' =RR 'Ed (8.2.29a)
Rlz-éd
B,' =— (8.2.29b)
and
Em = ﬁ;'ﬂ AY = Z—I;'i B, (842.30)
m b

Eq.'s (8.2.28) and (8.2.30) thus give the time average values, E& & EQ. (With
a2 check on C4 provided by (B.2.29). They are written in terms of the

original expansion (Eq. 8.2.2). 1In order to obtain the instantaneous values,
Cq(8) and Cu(8), the higher order terms in the expansion are included.

¢, , B Rlz Cmrrz
— —— L it ] — 1
5 [R° t—— 2RoRl cos@' + 5~ COS (26")] 2Rm sin
Ed 2 R12 Rlz @
== [Ro +T + 2R0R1 cosf’' +—2— cos(28")] + }: Bm' cos{mb')

m=3
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Cm'll' e
- sin8' + } A ' sin(a®') (8.2.31)
2Rm As2 D
Thus
2 -}
C,(8") = C, + 5 > ) B_' cos(m8')
2 R2 Rl m=3
—— L} — !
Rb + 5 + ZROR1 cosfB' + 5 cos(28")
Using the original trigonometric identity one can show
2 Rlz R12 2
wvrm—— L] — ] = ]
Ro ot 2R0R1 cosh' + 5 cos{28"') (Ro + Rl cosf') (8.2.31)
Thus
2 €0
c,(8") =T, + 5 Y B ' cos(m@') (8.2.34)
(R + R, cosb')  p=3 7
o] 1
_ ZRm @
C (8') =TC_ -~ 1 A sin(a8") (8.2.35)
m m Tr2 sind' p=2 o
Note that as long as
Rb Uo

1 1

Both C4(8') & Cp(&') remain bounded.

(8.2.32)

For convenience in computation Eq.'s (8.2.34) and 8.2.35) are written in the

original variable, 8'.

- 2 b
C.(8) = C, + T A sin[(2n+1)86]
d d (R +R sin9)2 [twl Zntl
o] 1
+ 3 Bom cos(2m9§] (8.2.37)
m=2
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2R

C (8) = C = ot 2 A, sin (2n8)
m w 2c059 n=2
+ -2-1 B, 41 €08 {(2m+1)8) {8.2.38)

Because the coefficients A, and By have already been calculated by 5.16~5,.18,
it 1s a simple matter to numerically calculate C3(9) & Cy(8). Typiecally 5 to
7 terms in the series were used for each. The advantage of the formulatiom in
Eq.'s (8.2.34) and (8.2.35) is that it shows that Cy(6) and C,(8') are well
behaved for all 0'.

Derivation for U, > Uy

For this case, R, 1s smaller than R; so that the velocity input to the
sensor is negative through part of the representative waveform. Because of
this sign change, the absolute value was not removed from Morison's equation.
A Fourler series expansion which iancorporates this restriction was not found;
therefore, expressions for_the instantaneous values of Cy and G, were not
derived. Expressiona for Cd and Cm were found by integrating Equation
(8.2.1)., This iategration was carried out over three Iintervals defined by
angles 6, and 85 such that:

0D< 6 < 8 : U + 0 sin 8 20
1 Q 1
H <
Bl < 8 < 32 : Uo + Ul sin 8 0
8 <8 < 2% : U +8U sin 9 >0
+] 1
where
-1 Uo
31=1T+sin T
1
92-211"81!!. ﬁ';

To find the expression for Cq, integrate Equation (8.2.1) over the three
regions:

2w C—d 8 8,
| Fx(9)de == J 7 r(&)Y|R(B)|d® + [ ° R(8)|R(B)|db
[*] 8

° 1
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Ehiz 2n

2n
+ . f R(B)|R(6)]d9] +T%‘- [ cos 8 d8 (8.2.39)
0

where:

R(B) = R0 + Rl 8in O

In the second integral in Equation (8.2.39):
2
REB|RB| = = (R(8))

Therefore, Equation (8.2.39) can be written:

2n c, [ an 8
[ Fx(8)d = ...%. l:j (R8)? 48 - 2 / 2 (R8)? de:l (8.2.40)
0 0

Q

Dividing by 7, and substituting for R(9):

1 2n Cd 2n 2 2 2
?oj F*(8)d = o OI (R.+ 2 RR sin 8 + R sin"0)d@
% 2 2 2
-2 (R; + 2 R R, sin 8 + R] sin “8)d (8.2.41)
8
1

The left~hand side of Equation (8.2.41) {s the definition of Ay given in
Equation (8.2.3). Performing the integration on the right-hand side of
(8.2.41) yields:

)

A =

2 2 2
. [gﬂ R N + MR, - 2 R1 (92 - 31) + 4 RoRl {cos 82 - cos 81)

1

[3¢]

)

2
R
- Rf (8, = 8)) +—% (sin(20,) - sin(281)ﬂ (8.2.42)
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Therefore, the expression for EE is:

_ , ® (8, - 8, R R
Cd-Ao Ro+_2 I+T + 2 {cos Bz—cos Bl)
Ry
+'Z? {(sin 262 - gin 231) (B8.2.43)

The expression for -C: is found by multiplying Equation (8.2.1) by cos 8 and
integrating over the three regions:

- B
2m Cd 2n 2 2 5
[ F*(8) cos(8)d8 = — | [ R(8) cos 6 d8 -2 [ R°(8) cos 0 48
o 0 g
1
mez 2m 2
+ of cos“8 4o (8.2.44)

Dividing by 7, and substituting for R(9):

1 2T C_d 2,
- [ F%(B) cos 8 d6 = T i (Ro cos 8 + 2 ROR
0 0

1 gin 9 cos 9

%

+ R% sin23 cos 8)d8 - 2 | (R2 cos 8 + 2 R R
g o 01
3

sio 8 cos ©

2n
2 2 y" 2
+ R} sin"0 cos 8)d® + 2w [ cose do (8.2.45)

The left-hand side of Equation (8.2.45) is the definition of By given in
Equation (8.2.3). Performing the integration on the right-hand side of
Equation (8.2,45)"
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2 2 2
[ 2 Ro (sin 92 = 8in 91) -2 RORI (sin 92 - sin 31)

2
Cn
2 .2 3 3 m
- -i’ Rl (311’1 62 - sin elﬂ + EKT (8-20506)

Rearrauging Equation (8.2.,46) yields the expression for E::

T 2K

* 2 2
0 :TT El + (Ro (sin 62 - sin Bl) + RoRl {sin 0

ala

2
2

R
2 1 3 3
- s8in 91) +—3 (sin 62 - gin Blzl
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